Innophore’s vision is to identify and develop high-value industrial and therapeutic enzymes and more efficient, environmentally friendly ‘green’ chemical production processes and novel biosimilars for medical treatments, including contributions to drug repurposing and side-effect prediction using our 3D point-cloud technology.

High-performance supercomputing is our daily business. Our clusters use about 6500 CPUs to run your experiments. Furthermore, we can deploy the experiments in the cloud. For this, we use Amazon Web Service (AWS) and Google Cloud.

We solve problems in a collaborative effort involving experts from different fields. This is also represented in our publication portfolio. Both established and young researchers contribute to our success.

We solve problems in a collaborative effort involving experts from different fields. This is also represented in our publication portfolio. Both established and young researchers contribute to our success.

Meet Innophore

In 2018, Innophore started as just a vision. Today, Innophore’s growing interdisciplinary team is proof that this vision has become a reality. Molecular biologists, biotechnologists, (bio)chemists, physicists, machine-learning experts, and computer scientists work together to steadily improve Innophore’s technology and find a solution to any challenge that arises.

Dr. Christian Gruber


Dr. Georg Steinkellner


PD Dr. Bettina Nestl


Prof. Karl Gruber


Christoph Blaschitz, MSc.


Dr. Marco Cespugli

Head of Structural Bioinformatics

PD Dr. Andreas Krassnigg

Head of AI and Data Science

Dr. Vedat Durmaz

Head of Computational Chemistry and Data Engineering

Chiara Gasbarri, MSc

Structural Bioinformatician

Dr. Stefan Grabuschnig

Data Scientist

Dr. Alice Guarneri


Dr. Michael Hetmann

Structural Bioinformatician

Dr. Ursula Kahler


Katharina Köchl, MSc


Alexander Korsunsky, MSc


Dr. Mario Müller

Grand and Funding Support

Dr. Bernd Nebel

Senior Scientist/Project Manager

Daniel Nutz

Data Scientist

Dipl. Ing. Lena Parigger


Dr. Verena Resch

Scientist/Visual Communication

Christoph Samonigg


Tobias Schopper


Amit Singh Sahrawat


Innophore GmbH is a spin-off company of acib GmbH and the University of Graz and was supported as a start-up project by Science Park Graz GmbH in the framework of the AplusB program.

Innophore GmbH is supported by the strategic investor EOSS Industries GmbH.

List of Publications

  1. Braunschmid, V., Fuerst, S., Perz, V., Zitzenbacher, S., Hoyo, J., Fernandez-Sanchez, C., Tzanov, T., Steinkellner, G., Gruber, K., S. Nyanhongo, G., Ribitsch, D., Guebitz, G.M., A fungal ascorbate oxidase with unexpected laccase activity (2020) International Journal of Molecular Sciences, (submitted)
  2. Hammerer, L., Friess, M., Cerne, J., Fuchs, M., Steinkellner, G., Gruber, K., Vanhessche, K., Plocek, T., Winkler, C.K., Kroutil, W. Controlling the Regioselectivity of Fatty Acid Hydroxylation (C10) at α- and β-Position by CYP152A1 (P450Bsβ) Variants (2019) ChemCatChem, 11 (22), pp. 5642-5649. DOI: 10.1002/cctc.201901679
  3. Engleder, M., Strohmeier, G.A., Weber, H., Steinkellner, G., Leitner, E., Müller, M., Mink, D., Schürmann, M., Gruber, K., Pichler, H. Evolving the Promiscuity of Elizabethkingia meningoseptica Oleate Hydratase for the Regio- and Stereoselective Hydration of Oleic Acid Derivatives (2019) Angewandte Chemie – International Edition, 58 (22), pp. 7480-7484. DOI: 10.1002/anie.201901462
  4. Stolterfoht, H., Steinkellner, G., Schwendenwein, D., Pavkov-Keller, T., Gruber, K., Winkler, M. Identification of key residues for enzymatic carboxylate reduction (2018) Frontiers in Microbiology, 9 (FEB), art. no. 250, . DOI: 10.3389/fmicb.2018.00250
  5. Fuchs, C.S., Farnberger, J.E., Steinkellner, G., Sattler, J.H., Pickl, M., Simon, R.C., Zepeck, F., Gruber, K., Kroutil, W. Asymmetric Amination of α-Chiral Aliphatic Aldehydes via Dynamic Kinetic Resolution to Access Stereocomplementary Brivaracetam and Pregabalin Precursors (2018) Advanced Synthesis and Catalysis, 360 (4), pp. 768-778. DOI: 10.1002/adsc.201701449
  6. Ribitsch, D., Hromic, A., Zitzenbacher, S., Zartl, B., Gamerith, C., Pellis, A., Jungbauer, A., Łyskowski, A., Steinkellner, G., Gruber, K., Tscheliessnig, R., Herrero Acero, E., Guebitz, G.M. Small cause, large effect: Structural characterization of cutinases from Thermobifida cellulosilytica (2017) Biotechnology and Bioengineering, 114 (11), pp. 2481-2488. DOI: 10.1002/bit.26372
  7. Payer, S.E., Marshall, S.A., Bärland, N., Sheng, X., Reiter, T., Dordic, A., Steinkellner, G., Wuensch, C., Kaltwasser, S., Fisher, K., Rigby, S.E.J., Macheroux, P., Vonck, J., Gruber, K., Faber, K., Himo, F., Leys, D., Pavkov-Keller, T., Glueck, S.M. Regioselective para-Carboxylation of Catechols with a Prenylated Flavin Dependent Decarboxylase (2017) Angewandte Chemie – International Edition, 56 (44), pp. 13893-13897. DOI: 10.1002/anie.201708091
  8. Biundo, A., Ribitsch, D., Steinkellner, G., Gruber, K., Guebitz, G.M. Polyester hydrolysis is enhanced by a truncated esterase: Less is more (2017) Biotechnology Journal, 12 (8), art. no. 1600450, . DOI: 10.1002/biot.201600450
  9. Wallace, P.W., Haernvall, K., Ribitsch, D., Zitzenbacher, S., Schittmayer, M., Steinkellner, G., Gruber, K., Guebitz, G.M., Birner-Gruenberger, R. PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes (2017)
  10. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations. G. Steinkellner* & C. C. Gruber*, K. Steiner, C. Winkler, T. Pavkov-Keller, A. Łyskowski, O. Schwamberger, M. Oberer, H. Schwab, K. Faber, K. Gruber Nat. Commun. 5:4150 (2014)
  11. Crystal Structure of an (R)-Selective ω-Transaminase from Aspergillus terreus. Łyskowski A, Gruber C. C., Steinkellner G, Schürmann M, Schwab H, et al. PLoS ONE 9(1): e87350. doi:10.1371/journal.pone.0087350 (2014)
  12. Fusion of binding domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis Ribitsch, D., Yebra, A.O., Zitzenbacher, S., Wu, J., Nowitsch, S., Steinkellner, G., Greimel, K., Doliska, A., Oberdorfer, G., Gruber, C.C., Gruber, K., Schwab, H., Stana-Kleinschek, K., Acero, E.H. , Guebitz, G.M., Biomacromolecules 16:1769-1776 (2013)
  13. The 2.5A Structure of the enterococcus conjugation protein TraM resembles VirB8 type IV secretion proteins Goessweiner-Mohr, N., Grumet, L., Arends, K., Pavkov-Keller, T., Gruber, C.C., Gruber, K., Birner- Gruenberger, R., Kropec-Huebner, A., Huebner, J., Grohmann, E., Keller, W., J. Biol. Chem. 288:2018-2028 (2013)
  14. Lipase B from Candida antarctica binds to hydrophobic substrate-water interfaces via hydrophobic anchors surrounding the active site entrance. C. C. Gruber, J. Pleiss. J. Mol. Catal. B, 84:48-54 (2012)
  15. High resolution crystal structure of monoacylglycerol lipase from Bacillus sp. H257 reveals conservation of the cap architecture between bacterial and human enzyme. S. Rengachari, G. A. Bezerra, C. Sturm, L. Riegler, C. C. Gruber, U. Taschler, A. Boeszoermenyi, R. Zimmermann, K. Gruber, M. Oberer. BBA-Lipid. Lipid. Met. 1821:1012–1021 (2012)
  16. Computational study of alkanesulfonate monooxygenase: activity and selectivity V. Ferrario, P. Tessaro, L. Knapic, C. Gruber, J. Pleiss, C. Ebert, L. Gardossi, E. Eichhorn, P. Braiuca. J Biomol Struct Dyn 30: 74-88 (2012)
  17. Systematic benchmarking of large molecular dynamics simulations employing GROMACS on massive multiprocessing facilities. C. C. Gruber, J. Pleiss* Comput. Chem. 32:600-606 (2011)
  18. Deracemisation of Secondary Alcohols via Biocatalytic Stereoinversion C.V. Voss, C.C. Gruber, W. Kroutil* Synlett 7, 991–998 (2010)
  19. Biocatalytic racemization of a-hydroxycarboxylic acids using a stereo-complementary pair of a-hydroxycarboxylic acid dehydrogenases A. Bodlennera, S.M. Glueck, B.M. Nestl, C.C. Gruber, N. Baudendistel, B. Hauer, W. Kroutil, K. Faber* Tetrahedron 65, 7752–7755 (2009)
  20. Orchestration of Concurrent Oxidation and Reduction Cycles for Stereoinversion and Deracemisation of sec-Alcohols. C.V. Voss, C.C. Gruber, W. Kroutil* J. Am. Chem. Soc. 130, 13969-13972 (2008)
  21. Bezerra, G. A., E. Dobrovetsky, R. Viertlmayr, A. Dong, A. Binter, M. Abramić, P. Macheroux, S. Dhe-Paganon, and K. Gruber. 2012. Entropy driven binding of opioid peptides induces a large domain motion in human dipeptidyl peptidase III. Proc. Natl. Acad. Sci. USA 109:6525-6530.
  22. Lang, B. S., A. C. F. Gorren, G. Oberdorfer, M. V. Wenzl, C. M. Furdui, L. B. Poole, B. Mayer, and K. Gruber. 2012. Vascular bioactivation of nitroglycerin by aldehyde dehydrogenase-2: reaction intermediates revealed by crystallography and mass spectrometry. J. Biol. Chem. 287:38124-38134.
  23. Winkler, A., K. Motz, S. Riedl, M. Puhl, P. Macheroux, and K. Gruber. 2009. Structural and mechanistic studies reveal the functional role of bicovalent flavinylation in berberine bridge enzyme. J. Biol. Chem. 284:19993-20001.
  24. Winkler, A., A. Lyskowski, S. Riedl, M. Puhl, T. M. Kutchan, P. Macheroux, and K. Gruber. 2008. A concerted mechanism for berberine bridge enzyme. Nat. Chem. Biol. 4:739-741.
  25. Baral, P. K., N. Jajčanin-Jozić, S. Deller, P. Macheroux, M. Abramić, and K. Gruber. 2008. The first structure of dipeptidyl-peptidase III provides insight into the catalytic mechanism and mode of substrate binding. J. Biol. Chem. 283:22316-22324.
  26. Weis, R., R. Gaisberger, W. Skranc, K. Gruber, and A. Glieder. 2005. Carving the active site of almond R-HNL for increased enantioselectivity. Angew. Chem. Int. Ed. 44:4700-4704.